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Abstract. We argue that the integrable modified nonlinear Schrödinger equation with the nonlinearity dis-
persion term is the true starting point to analytically describe subpicosecond pulse dynamics in monomode
fibers. Contrary to the known assertions, solitons of this equation are free of self-steepening and the breather
formation is possible.

PACS. 02.30.Jr Integrable systems – 42.65.Tg Optical solitons; nonlinear guided waves

1 Introduction

Soliton-based optical communication systems serve as an
exciting example of the application of a purely mathemat-
ical concept (soliton) to modern technology. The nonlinear
Schrödinger equation (NSE)

iut + (1/2)uxx + |u|2u = 0 (1)

is the adequate model to describe picosecond soliton evo-
lution in monomode fibers [1]. Here u(x, t) is the envelope
of the pulse electric field and coordinates t and x measure
distance along the fiber and time in a frame comoving with
the pulse group velocity, respectively. The applicability of
NSE depends crucially on the assumption that the spa-
tial width of the envelope is much larger that the carrier
wavelength. Besides, the success of this model is substan-
tially related to integrability of NSE [2] and hence to the
controllability of soliton parameters [3]. Various more sub-
tle effects accompanying the picosecond soliton propaga-
tion are usually treated as a perturbation of the integrable
model.

On the other hand, dynamics of subpicosecond opti-
cal pulses (≤ 100 fs) is not well governed by NSE be-
cause the above mentioned assumption is not satisfied.
The spectral width of subpicosecond pulses becomes com-
parable with the carrier frequency, and three main addi-
tional effects – nonlinearity dispersion, intrapulse Raman
stimulated scattering and linear higher-order dispersion –
should be taken into account [4]:

iut + (1/2)uxx + |u|2u = iα1

(|u|2u)
x

+ α2

(|u|2)
x
u

+ iα3uxxx. (2)
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The terms in rhs of (2) account for the above additional
effects. In general, extra terms violate integrability of the
equation. Hence, a question can be posed: does there exist
an equation that will be integrable as NSE and at the same
time would be more relevant in the subpicosecond range?
The answer is positive because the modified NSE (MNSE)

iut + (1/2)uxx + |u|2u + iα
(|u|2u)

x
= 0, α ∈ Re (3)

with the α-dependent nonlinearity dispersion term is still
integrable though the associated spectral problem is more
involved than the Zakharov-Shabat one. Namely, the
initial-value problem for MNSE (3) can be solved within
the framework of the Wadati-Konno-Ichikawa (WKI)
spectral problem [5]. A careful study of the WKI spectral
problem (or the quadratic bundle) for MNSE and related
equations was undertaken by Gerdjikov and Ivanov [6].
Explicit soliton solutions to MNSE obtained in [7] and [8]
turned out too complicated for practical use. That is the
reason that MNSE is usually treated as NSE with α-
dependent perturbation term, especially as actual values
of α are normally small.

Among the other things, such treatment gave rise to
some misunderstanding. First, it was shown in [9] that
the initially symmetric hyperbolic-secant pulse evolving
in accordance with MNSE (3) develops an asymmetric
self-phase modulation and a self-steepening. There is a
wide-spread opinion that the self-steepening is an inher-
ent property of the subpicosecond pulse dynamics [4] that
should be minimized for proper operation of an informa-
tion system. Second, it is well known [10] that the ini-
tial pulse 2 sechx evolving according to NSE produces the
NSE breather (the bound state of two solitons). On the
other hand, the same initial pulse decays into separate
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solitons when evolving according to MNSE. Hence, it was
inferred that MNSE does not admit breathers (or higher-
order solitons) [11].

Our aim here is to show that the situation with sub-
picosecond soliton dynamics is rather different. We argue
that the integrable MNSE is the true starting point to
analytically describe this dynamics. It is remarkable that
numerical simulations of the MNSE-based soliton propa-
gation revealed various regimes which cannot be explained
by treating the α-dependent term in (3) as a perturba-
tion of NSE [12]. We derive the MNSE soliton solution
that is non-perturbative w.r.t. α and demonstrate that
the MNSE soliton propagates without any self-steepening.
Besides, we explicitly obtain breather solution to MNSE.
Numerical simulations confirm the stability of the MNSE
breather.

2 MNSE soliton

We will employ the Riemann-Hilbert (RH) problem [13]
for solving nonlinear equations. Let us start with the Lax
pair for MNSE (3):

Ψx = Λ(k) [σ3, Ψ ] + 2ikQΨ, Λ(k) = −2i
α

(
k2 − 1

4

)
, (4)

Ψt = Ω(k) [σ3, Ψ ] +
(

4i
α

k3Q + 2ik2Q2σ3

− i
α

kQ + kQxσ3 − 2iαkQ3

)
Ψ,

Ω(k) = − 4i
α2

(
k2 − 1

4

)2

.

Here the Hermitian matrix Q =
(

0 u
ū 0

)
stands for the

potential of the spectral problem (4), k is a spectral pa-
rameter. The standard procedure is:
a) building the Jost solutions of the linear spectral prob-
lem (4);
b) building the solutions Φ± which are analytical in com-
plementary regions of the k-plane;
c) formulation of the RH problem for Φ± with the stan-
dard normalization

Φ± → I for |k| → ∞, (5)

where I is the identity matrix.
It is, however, easy to see by substituting the asymp-

totic expansion w.r.t. to k−1 of Ψ to the spectral prob-
lem (4) that this problem does not agree with the standard
normalization. On the other hand, an associated equation
with the fifth-order nonlinearity,

ivt + (1/2)vxx − iαv2v̄x + |v|2v + α2|v|4v = 0 (6)

has the Lax pair as well with the WKI spectral problem

Ψ (A)
x = Λ(k)[σ3, Ψ

(A)] + (2ikQA + iαQ2
Aσ3)Ψ (A), (7)

QA =
(

0 v
v̄ 0

)

that agrees with the standard normalization, and with the
same dispersion relation Ω(k) for the temporal Lax equa-
tion. Moreover, equations (3) and (6) are gauge equiva-
lent and solutions of MNSE (3) follow from those of (6)
by means of a simple algebraic relation

Q = g−1QAg, g(x, t) = Ψ (A)(k = 0, x, t). (8)

The associated equation (6) does not have such an obvi-
ous physical interpretation as the MNSE but it has an ex-
tremely simple soliton solution. Hence, we will not solve
MNSE directly. Instead we will integrate the associated
equation (6) and then will obtain solutions of MNSE by
the algebraic relation (8).

We begin with the spectral problem (7) for the asso-
ciated equation. At first we define the Jost solutions J±,
J± → I at x → ±∞, which are interrelated with the scat-
tering matrix S, J−E = J+ES. Here E = exp (Λ(k)x). Di-
viding the Jost solutions into columns, J± = (J (1)

± , J
(2)
± ),

it can be shown by the standard analysis of integral equa-
tions that the columns J

(1)
+ and J

(2)
− are analytical in the

first and third quadrants of the k-plane. Hence, the matrix
function Φ+ = (J (1)

+ , J
(2)
− ) is analytical as a whole in the

same quadrants. The matrix Φ+ can be expressed in terms
of the Jost solution J+ and some entries of the scattering
matrix:

Φ+ = J+ES+E−1, S+ =
(

1 s12

0 s22

)
.

Because the potential QA is Hermitian, we have the in-
volutions [J±(k)]† =

[
J±(k̄)

]−1, S(k)† = S(k)−1. They
allow us to introduce the matrix function Φ−, Φ−1

− (k) =
Φ+(k̄)† = ES†

+E−1J−1
+ that is analytical in the second

and forth quadrants. Thereby, we can pose the RH prob-
lem with the standard normalization,

Φ−1
− Φ+ = EG(k)E−1, Φ± → I at k → ∞, (9)

where

G(k) = S†
+S+ =

(
1 s12

s̄12 1

)
, k∈{k = ξ − iη, ξη = 0} ,

as a problem of analytical factorization of the non-
degenerate matrix G(k) defined on both the real and imag-
inary axes of the k-plane.

In general, the function Φ+ has zeros in some points kj

lying in the first and third quadrants, detΦ+(kj) = 0.
Hence, in these points there exist eigenvectors |nj〉 with
zero eigenvalue. It is important that zeros kj appear by
pairs (kj ,−kj). It is a feature of the WKI spectral prob-
lem. Hence, the single soliton of the associated equation is
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determined by two zeros k1 and −k1. The zeros kj , eigen-
vectors |nj〉 and the matrix G(k) comprise the RH data.
Because we deal with the solitons only, G(k) being related
with the continuous spectrum of the spectral problem, is
taken to be the identity matrix.

If Φ+ is a solution of the RH problem (9), it can be
expanded in the asymptotic series Φ+ = I + Φ

(1)
+ /k +

Φ
(2)
+ /k2 + · · · Substituting this expansion into the spectral

problem (7), we reconstruct the potential QA:

QA = (1/α)[σ3, Φ
(1)
+ ] = (2/α)σ3Φ

(1)
+ . (10)

Now we derive a soliton of the associated equation (6).
Let us have zeros k1 and −k1 and two eigenvectors |n±〉.
It can be easily shown that the eigenvectors obey the
equations

|n+〉x = Λ(k1)σ3|n+〉, |n+〉t = Ω(k1)σ3|n+〉.
Hence, we obtain explicit space and time dependencies of
the eigenvectors,

|n+〉 =
(

exp[Λ(k1)x + Ω(k1)t] exp(a + iφ0)
exp[−Λ(k1)x − Ω(k1)t]

)
,

|n−〉 = σ3|n+〉, 〈n±| = |n±〉†.
Here a, φ0 = const. It can be shown by the dressing
method [13] that the matrix Φ+ is represented as (k± ≡
±k1)

Φ+(k) = I −
∑

j,l=±

|nj〉(D−1)j l〈nl|
k − k̄l

, Dj l =
〈nj |nl〉
kl − k̄j

,

(11)

Φ−1
− (k) = I +

∑
j,l=±

|nj〉(D−1)j l〈nl|
k − kj

·

Because the eigenvectors are known explicitly, we can eval-
uate the matrix Φ+ as Φ+(k) = I−D+/(k−k̄1)−D−/(k+
k̄1), where

D+ =
k2
1 − k̄2

1

2

×
(

ez(k1e−z + k̄1ez)−1 eiϕ(k1e−z + k̄1ez)−1

e−iϕ(k1ez + k̄1e−z)−1 e−z(k1ez + k̄1e−z)−1

)
,

D− = −σ3D+σ3.

We introduced here new independent variables z and ϕ:

z = −(1/w)(x − V t − x0),

ϕ = V x − (1/2)(V 2 − w−2)t + ϕ0,

x0 = aw, ϕ0 = const.,

where the soliton velocity V and width w (see below) are
defined by

V =
1
2α

(
1 − 2(k2

1 + k̄2
1)

)
, w =

1
2i

α

k2
1 − k̄2

1

·

Hence, the eigenvalue k1 is expressed in terms of velocity
and width as

k1 = (1/2)(1 − αV − iα/w)1/2, Imk1 < 0. (12)

Expanding then Φ+ in the asymptotic series, we obtain
from equation (10) the soliton solution of the associated
equation:

vs =
i

w

eiϕ

k1e−z + k̄1ez
· (13)

It has indeed a very simple form.
An important aspect of the solution (13) should be

noted. Namely, the parameter α that enters the soliton
width w appears in the denominator. Hence, we cannot
reproduce the soliton (13) considering the associated equa-
tion (6) as the α-perturbed NSE. Nevertheless, there exists
a procedure [14] to perform the limit α → 0. Namely, rep-
resenting k1 as k1 = (1/2) − (α/2)λ1 + O(α2), we obtain
in this limit from equation (13) the NSE soliton with the
eigenvalue λ1.

As regards the MNSE soliton us, it follows from vs

by means of the algebraic relation (8). Indeed, us =
(g2/g1)vs,(

g1 0
0 g2

)
= Φ+(k = 0) = I +

2
k̄1

(
D+11 0

0 D+22

)
.

Explicitly we have

g1 =
k1

k̄1

k1ez + k̄1e−z

k1e−z + k̄1ez
, g2 =

k1

k̄1

k1e−z + k̄1ez

k1ez + k̄1e−z
,

us =
i
w

k1e−z + k̄1ez

(k1ez + k̄1e−z)2
eiϕ. (14)

The MNSE soliton (14) looks much simpler than those
derived in [7] and [8]. In the limit α → 0, the solitons
of both the MNSE and the associated equation reproduce
one and the same NSE soliton.

Square of module of us (14) is written as

|us|2 =
1

w2
(k1e−z + k̄1ez)−1(k1ez + k̄1e−z)−1

=
1

2w2

[
1 − αV +

√
(1 − αV )2 +

α2

w2
cosh

2
w

(x − V t)

]−1

.

We see from this relation that the envelope |us| moves
holding its shape, i.e., without any self-steepening.

3 MNSE breather

To derive the MNSE breather, we start from four
zeros ±k1 and ±k2, where kj = (1/2)(1 − αVj −
iα/wj)1/2, Imkj < 0 (cf. Eq. (12)). Because we seek for
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a bound state of two solitons, we put V1 = V2 ≡ V and,
without loss of generality, V = 0. We have four eigenvec-
tors with the property |n2j〉 = σ3|n2j−1〉, j = 1, 2. Namely,

|n1〉 =
(

exp[−(x/2w1) + i(t/4w2
1) + iϕ11]

exp[(x/2w1) − i(t/4w2
1) + iϕ12]

)
,

|n3〉 =
(

exp[−(x/2w2) + i(t/4w2
2) + iϕ21]

exp[(x/2w2) − i(t/4w2
2) + iϕ22]

)
(15)

with a special relation for the constant phases ϕ11−ϕ12−
ϕ21+ϕ22 = π. Denote λ2j−1 ≡ kj and λ2j ≡ −kj , j = 1, 2.
Then the matrix function Φ+(k) for the breather is written
as (cf. Eq. (11))

Φ+(k)=I−
4∑

m,n=1

|nm〉(D−1)m n〈nn|
k − λ̄n

, Dm n =
〈nm |nn〉
λn − λ̄m

·

We omit cumbersome but evident calculations performed
along the lines of Section 2 and give below the explicit
expression for the MNSE breather at rest:

ubr = (g′2/g′1)vbr , (16)

vbr =
w1 − w2

w1 + w2
D−1

[
w1

(
k1ex/w1 + k̄1e−x/w1

)
eit/2w2

2

+w2

(
k2ex/w2 + k̄2e−x/w2

)
eit/2w2

2

]
,

D = w1w2

(
k1ex/w1 + k̄1e−x/w1

)
×

(
k2ex/w2 + k̄2e−x/w2

)
−w2

+

(
k1ex/w+−it/w+w− − k̄2e−x/w++it/w+w−

)
×

(
k2ex/w++it/w+w− − k̄1e−x/w+−it/w+w−

)
,

g′1 = Φ+11(k = 0) = 1 − iα
2D

×
[

w1 − w2

w1 + w2

(
w1

k̄1

k̄2
− w2

k̄2

k̄1

)
e−2x/w+

+w1
k1

k̄2
e2x/w− + w2

k2

k̄1
e−2x/w−

+w+

(
k1

k̄1
e−2it/w+w− +

k2

k̄2
e2it/w+w−

)]
,

g′2 = Φ+22(k = 0) = 1 − iα
2D̄

×
[

w1 − w2

w1 + w2

(
w1

k̄1

k̄2
− w2

k̄2

k̄1

)
e2x/w+

+w1
k1

k̄2
e−2x/w− + w2

k2

k̄1
e2x/w−

+w+

(
k1

k̄1
e2it/w+w− +

k2

k̄2
e−2it/w+w−

)]
.

Here w−1
± = (1/2)

(
w−1

1 ± w−1
2

)
. It is seen that the MNSE

breather oscillates with the period T = πw+w− and repro-
duces in the limit α → 0 the well known NSE breather [10].
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Fig. 1. Square of module of the MNSE breather solution (16)
for w1 = 1/3, w2 = 1 and α = 0.1.

Figure 1 shows the square of module of the breather solu-
tion (16) for w1 = 1/3, w2 = 1 and α = 0.1. We see that
there is no any decay of the MNSE breather.

4 Conclusion

We consider MNSE as a natural integrable generalization
of NSE to the range of subpicosecond optical pulses. It
is shown in this paper that MNSE possesses the basic in-
gredients (solitons and breathers) of integrable nonlinear
equations. To justify the applicability of these results to
the description of actual subpicosecond pulses, we should
account for at least the intrapulse Raman scattering that
breaks integrability of the equation. A possibility to re-
duce an adverse action of this effect is discussed in [15] on
the basis of the perturbation theory for the MNSE soli-
ton [14]. A novel way to suppress the Gordon-Haus effect
for the MNSE soliton was revealed in [16]. Recently quasir-
adiation solution of a compound model including MNSE
was obtained by Zabolotskii [17].
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